Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 1 Banach spaces

math.uwb.edu.pl/~zaf/kwasniewski/teaching

Normed spaces

What is a vector space (a linear space)?

Def. A normed space is a linear space X over a field $\mathbb{F} := \mathbb{R}, \mathbb{C}$ equipped with a **norm**, i.e. a function $\|\cdot\|: X \to [0,\infty)$ such that for $x, y \in X, \lambda \in \mathbb{F}$ we have:

(nondegeneracy)

 $||x + y|| \le ||x|| + ||y||.$

(positive homogeneity)

(triangle inequality)

(inverse triangle inequality) $|||x|| - ||y||| \le ||x - y||$

The norm defines a metric by the formula d(x, y) := ||x - y||, $x, y \in X$. Hence the linear space X is also a **topological space**.

Open sets in X are unions of open balls, where by an **open ball** centered in $x \in X$ and radius r > 0 we mean the set

$$B(x,r) := \{ y \in X : ||x - y|| < r \}.$$

A sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ converges to $x \in X \iff \lim_{n \to \infty} ||x_n - x|| = 0$. We write then $x_n \to x$ or $x_n \xrightarrow{||\cdot||} x$.

Prop. (continuity of the linear structure) In every normed space, scalar multiplication, vector addition and norm are continuous functions.

Proof: Let
$$\lambda_n \to \lambda$$
, $x_n \to x$ and $y_n \to y$, that is $|\lambda_n - \lambda| \to 0$,
 $||x_n - x|| \to 0$ and $||y_n - y|| \to 0$. Then
 $||\lambda_n x_m - \lambda x|| \stackrel{N3}{\leq} ||\lambda_n x_m - \lambda_n x|| + ||\lambda_n x - \lambda x||$
 $\stackrel{N2}{=} |\lambda_n| \cdot ||x_m - x|| + |\lambda_n - \lambda| \cdot ||x|| \longrightarrow 0$, when $n, m \to \infty$.
Hence $\lambda_n x_m \to \lambda x$, and so scalar multiplication $\cdot : \mathbb{F} \times X \to X$ is
continuous. Continuity of vector addition $+ : X \times X \to X$ follows from
 $||(x_n + y_m) - (x + y)|| \stackrel{N3}{\leq} ||x_n - x|| + ||y_m - y|| \longrightarrow 0$, when $n, m \to \infty$

Continuity of the norm follows from the "inverse triangle inequality": $|||x_n|| - ||x||| \le ||x_n - x|| \to 0$, whence $||x_n|| \to ||x||$. **Def.** A **Banach space** is a complete normed space, that is a normed space $(X, \|\cdot\|)$, where for every $\{x_n\}_{n=1}^{\infty} \subseteq X$ Stefan Banach $\lim_{n,m\to\infty} \|x_n - x_m\| = 0 \implies \qquad \exists \lim_{x_0\in X} \|x_n - x_0\| = 0.$ Cauchy sequence convegent sequence

Remark. The converse implication always holds. 📻

Ex. The real numbers \mathbb{R} with norm ||x|| = |x| form a Banach space over \mathbb{R} . Similarly, \mathbb{C} with ||x|| = |x| is a Banach space over \mathbb{C} .

Ex. The *n*-dimensional space \mathbb{F}^n with norm $||x||_2 := \sqrt{\sum_{k=1}^n |x(k)|^2}$ is a Banach space over $\mathbb{F} = \mathbb{R}, \mathbb{C}$. (Euclidean space)

Prop. If a linear subspace $Y \subseteq X$ of a normed space X is complete, then Y is closed in X. If X is complete, then

Y is complete $\iff Y$ is closed.

(recall that $\overline{Y} = Y \cup Y^d$, where Y^d is the set of limit points of Y)

Dowód: " \Longrightarrow ". Let $y \in Y^d$, so there is $\{y_n\}_{n=1}^{\infty} \subseteq Y$ convergent to $y \in X$. In particular, $\{y_n\}_{n=1}^{\infty}$ is a Cauchy sequence in Y. Hence by completeness of Y, the sequence $\{y_n\}_{n=1}^{\infty}$ converges in Y. Thus $y \in Y$. We showed that $Y^d \subseteq Y$. Equivalently, $Y = \overline{Y}$ is closed. " \Leftarrow ". Assume X is complete. Any Cauchy sequence $\{y_n\}_{n=1}^{\infty} \subseteq Y$ in Y is also Cauchy in X. Hence it converges in X. Thus there is $y \in X$ such that $y_n \xrightarrow{\|\cdot\|} y$. Since $\{y_n\}_{n=1}^{\infty} \subseteq Y$ and $Y = \overline{Y}$ we must have $y \in Y$. Hence $\{y_n\}_{n=1}^{\infty}$ converges in Y. Accordingly, Y is complete.

Rem. Every normed space can be completed to a Banach space (in an essentially unique way)

Theorem (Completion of normed spaces)

For any normed space Y there exist

- a Banach space X (the completion of Y)
- linear isometry $\Psi: Y \to X$ such that $\overline{\Psi(Y)} = X$.

That is, Y embeds into X as a dense subspace. Moreover, such X is unique up to a canonical isometric isomorphism. One writes $X = \overline{Y}$.

"Sketch of Proof": Define elements of X as equivalence classes of Cauchy sequences $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq Y$ with respect to the equivalence relation:

$$\{x_n\} \sim \{y_n\} \iff \lim_{n\to\infty} \|x_n - y_n\| = 0.$$

Denoting by $[\{x_n\}]$ the corresponding equivalence class put

$$\begin{split} [\{x_n\}] + [\{y_n\}] &:= [\{x_n + y_n\}], \qquad \lambda[\{x_n\}] := [\{\lambda x_n\}], \\ \|[\{x_n\}]\| &:= \lim_{n \to \infty} \|x_n\|, \qquad \Psi(y) = [\{y, y, y, ...\}] \\ \text{One checks all this works.} \end{split}$$

Cor. A normed space Y is complete if and only if its image $\Psi(Y)$ is closed under any linear isometry $\Psi: Y \to X$ into a normed space X.

"Completeness" = "closedness in every supspace"

Proof: Note that for any linear isometry $\Psi : Y \to X$ the space Y is complete \iff the space $\Psi(Y)$ is complete.

- If this holds, then the set $\Psi(Y)$ is closed in Y by **Prop**.
- Conversely, by Theorem there is an isometry Ψ : Y → X into the complete space X. Therefore, if Ψ(Y) is closed in X, then by Prop the space Ψ(Y) ≅ Y is complete.

Def. Banach subspace \equiv a closed linear subspace of a Banach space

Lem. Let $\{x_n\}_{n=1}^{\infty} \subseteq X$ be a Cauchy sequence.

Proof: 📜

- If a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ converges to x, then the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x.
- For every *q* ∈ (0, 1) there is a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that
 $\|x_{n_k} \underline{x}_{n_l}\| \leq q^k$ for every *l* ≥ *k*.

Def. For a sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ in a normed space X we say that the series $\sum_{n=1}^{\infty} x_n$ converges, if the sequence $\left\{\sum_{n=1}^{N} x_n\right\}_{N=1}^{\infty}$ of partial sums converges and then the sum of the series is the limit

$$\sum_{n=1}^{\infty} x_n := \lim_{N \to \infty} \sum_{n=1}^{N} x_n$$

The series $\sum_{n=1}^{\infty} x_n$ is absolutly convergent if $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Prop. A normed space X is complete if and only if every absolutely convergent series is convergent in X.

Proof: Assume that
$$\sum_{n=1}^{\infty} \|x_n\| < \infty$$
. Then for $M \ge N \ge 1$ we have
 $\|\sum_{n=1}^{M} x_n - \sum_{n=1}^{N} x_n\| = \|\sum_{n=N}^{M} x_n\| \le \sum_{n=N}^{M} \|x_n\| \longrightarrow 0$, when $N, M \to \infty$,
Hence $\left\{\sum_{n=1}^{N} x_n\right\}_{N=1}^{\infty}$ is Cauchy, and so convergent if X is complete.

Now assume that every absolutely convergent series is convergent. Let $\{x_n\}_{n=1}^{\infty} \subseteq X$ be any Cauchy sequence. By **Lem** we may choose a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that $||x_{n_k} - x_{n_l}|| \leq (1/2)^k$ for $l \geq k$. Put $y_1 := x_{n_1}$ and $y_{k+1} := x_{n_{k+1}} - x_{n_k}$ dla $k \geq 1$. Then

$$\sum_{k=1}^{\infty} \|y_k\| = \|x_{n_1}\| + \sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| \le \|x_{n_1}\| + \sum_{k=1}^{\infty} (1/2)^k = \|x_{n_1}\| + 1 < \infty$$

Hence $\sum_{k=1}^{\infty} y_k$ converges. But $\sum_{k=1}^{N} y_k = x_{n_N}$, and so in fact the subsequnce $\{x_{n_k}\}_{k=1}^{\infty}$ converges. Hence $\{x_n\}_{n=1}^{\infty}$ converges by Lem.

9/9